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Abstract— UltraFlex is an iterative model-based ul-
trasonic flexible-array shape calibration framework
that uses automatic differentiation. This work eval-
uates array-shape-calibration model performance
while examining multiple image quality metrics:
speckle brightness, envelope entropy, coherence
factor, lag-one coherence, common-midpoint corre- 3 1 +
lation coefficient, and common-midpoint phase er- ; Beamform By, z(7q; ¥)
ror. The accuracy of these image quality metrics 4+ 4
was evaluated on simulated phantoms using a va- Quality Metric Q( )
riety of array shapes. Experimental phantom and [eecr [ R [re |
in vivo liver datasets were also investigated using .
transducers with known geometries. While speckle L (7 €
brightness, envelope entropy, and coherence factor oL/o7,
enable model convergence under many conditions,
lag-one coherence, common-midpoint correlation coefficient, and common-midpoint phase error enable more
accurate element position estimations and improved visual ultrasound image focusing quality. Furthermore, the
models based on the common-midpoint correlation coefficient and phase-error quality metrics are the most robust
against additive white noise while achieving median mean Euclidean errors (MEEs) of 3.7 um for simulation,
29.7 um for phantom, and 69.0 um for in vivo liver data. These array shape calibration results show promise for the
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current and future development of experimental flexible- and wearable-ultrasonic arrays.

Index Terms— flexible arrays, wearable ultrasound, acoustic imaging, ultrasound autofocusing

[. INTRODUCTION

OR decades, medical ultrasound imaging has been con-
fined to conventional rigid-array transducers. While these
conventional transducers have provided immeasurable benefit
to ultrasound imaging, the recent development of flexible-array
ultrasound transducers opens the door to new applications
for ultrasound, including continuous monitoring and wearable
ultrasound technologies [1]-[5]. Flexible-array ultrasound sys-
tems provide a conformable aperture that can accommodate
the contoured surface of an imaging subject. Furthermore,
some flexible-array ultrasound systems can be used in a
wearable configuration to alleviate the need for continuous
ultrasound navigation, reducing operator dependency [1].
For example, rodent-wearable flexible-array transducers
have previously been investigated with the goal of neural
activity monitoring [2]. Human-wearable flexible-array device
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studies have been designed for assessing cardiac dysfunction
via cardiac output, ejection fraction, and stroke volume [3].
Another application area of wearable flexible-array ultrasound
systems can be found in therapeutics. Wound healing with
focused ultrasound has demonstrated protein stimulation in
dermal and epidermal layers of diabetic rats [4]. Neuromodu-
lation using a prototype wearable flexible-array has also been
proposed [5]. Despite the benefits that flexible-array ultra-
sound systems provide, image reconstruction and therapeutic
focusing are compromised without knowing the pose of each
transducer element (that is, orientation and position in R3).
Two primary approaches have been used to estimate un-
known element poses. The first class involves external mechan-
ical (e.g., fiber-optic strain [6], resistive-strain, etc.) or opti-
cal [7], [8] tracking-based analysis of array deformation. Chen
et al. [6] used a near-infrared fiber-optic reflectometer device
embedded within a custom flexible-array transducer to achieve
position errors of 400 pym and 421 um in the y—z (lateral) plane
for a convex and sinusoid array shape, respectively. China et
al. [8] passively tracked infrared-reflecting spheres affixed to
the flexible array to achieve position errors of 500 + 290 um
(CIRS phantom), 540 + 350 pm (deformable phantom), and
360 =240 um (cadaveric specimen). These approaches require
external equipment that adds bulk to the transducer, additional
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Highlights
o UltraFlex is a model-based flexible-array shape calibration framework that uses iterative optimization updates through automatic
differentiation to enable lower position estimation error compared to previous models.

¢ Model performance is evaluated using envelope entropy, speckle brightness, lag-one coherence, coherence factor, correlation
coefficient, and phase-error focusing quality metrics.

e These iterative model results demonstrate promise for current and future hardware development of ultrasonic wearable and

flexible arrays that utilize ultrasound-autofocusing software.
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Fig. 1. (a) Acquisition of the multistatic dataset ¥. (b) The iterative aperture shape estimation process begins by computing the bi-directional time-
of-flight 7¢,,.. From these delays, the IQ data is beamformed B using a synthetic aperture approach (the image above has been envelope-detected
and log-compressed). An image quality metric Q is evaluated, which is then used as part of an objective function L. The objective function is
differentiated with respect to the element positions 74, and the red arrows represent the error that is backpropagated through the model to update
the array element positions at iteration <. (c) Visualization of B-mode reconstruction over iterations, starting with the aperture shape before the first
iteration and after one thousand iterations. The color of the aperture loosely represents the deviation of the aperture shape from the ground truth,

where red and green represent more and less deviation, respectively.

complexity to clinical translation, or both.

The second class of approaches involves intrinsic deter-
mination of element pose via algorithms that rely only on
the channel data collected from the imaging system. These
approaches include methods based on assumed array ge-
ometries [9]-[11], derivative-free black-box optimization (e.g.
simulated annealing [12], [13] or exhaustive sampling [14],
[15]), deep learning methods [16], [17], and direct gradient-
based optimization [7], [18]. Some approaches within this
class assess an image quality metric such as the maximum
lag-one spatial coherence [11], image contrast [12], envelope
amplitude-variance region-of-interest sharpness [13], phase
variance [14], short-lag spatial coherence [15], and image
entropy [7], [18]. Ingram et al. [14] achieved root mean square
errors in element positions of 0.18 A (110.9 ym) and 0.4 A
(246.4 um) for simulated and experimental data, respectively.
Omidvar et al. [15] achieved mean Euclidean errors (MEEs)
lower than 0.1 A (43.1 um) and 1.4 \ (603.9 um) for simulated
and experimental data, respectively. Noda et al. [16] achieved
an average MEE of 860 um and 1,110 pm for simulation and
in vivo test data, respectively, using a deep learning approach.
Noda et al. [18] reported average MEEs between 40 and 54 um
across three array geometries for simulation data, and between
8.6 and 37 pm across three array geometries for phantom data
while using a direct gradient-based approach with an aperture
size of only 20 elements in each case. Huang et al. [7] built
upon [18] with coarse initialization from an optical tracker
while achieving a post-iterative-model MEE of 148.8 um.

As mentioned previously, methods within the second class
of approaches may be derivative-free or involve gradient back-

propagation via automatic differentiation frameworks (e.g.,
JAX [19], PyTorch, and TensorFlow). Conventional deep
learning-based methods utilize gradient backpropagation to
update the weights and biases of a multilayer neural net-
work. A direct gradient-based optimization approach may
similarly utilize an automatic differentiation framework with
a differentiable objective function to iteratively update model
assumptions (e.g., array element poses) [18].

In Noda et al. [18], an array shape estimation is made using
a linear combination of orthogonal functions. Based on this
array shape, timing delays are calculated, and image focus is
evaluated by calculating the beamformed envelope entropy.
The errors are backpropagated through the beamformer to
update the combination of orthogonal functions. Our method
differs from Noda et al. [18] in that (a) we do not constrain
our estimated shape to a combination of orthogonal functions
(our only assumption is that the number of elements and the
pitch of the array are known), (b) we preferentially use a
differentiable objective function that is based on common-
midpoint signals and is not subject to errors resulting from
natural signal decorrelation or variations in signal amplitude,
(c) we account for the orientation of individual elements, and
(d) we validate our model on in vivo liver data. Here, we
extend our previous work in Hyun et al. [20] to rigorously eval-
uate our UltraFlex framework across various quality metric-
based objective functions, update the reconstruction model to
account for curved surfaces, and examine the performance on
phantoms and in vivo data.

Il. ULTRAFLEX FRAMEWORK
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A. Differentiable Image Reconstruction

Pulse-echo ultrasound imaging utilizes transmit and receive
beamforming to focus pressure signals (i.e., to spatially local-
ize them). Let r, denote the spatial position of the a-th array
element in the x—z (elevational) plane. Assuming a constant
speed of sound c, the time-of-flight from the element to the
coordinate ¢ in the imaging field-of-view (2 is

1
ta(ra;ro,c) = P [ra —rall, - (D

Elements with spatial extent exhibit directivity, which can be
modeled using an acceptance cone mask based on f-number.
First, we transform 7 into the element’s frame of reference
using a translation and rotation:

, FQ} _ [cos@(ra) —sin9(ra)} {m_%

e = 26 sinf(r,) cosf(ry,)

}7 2)

Z2Q — Za

where the element orientation 6, is inferred from neighboring
elements as

O(ry) = —tan™ ((2zag41 — Za—1)/(Tag1 — Ta—1)).  (3)

Then, the acceptance cone mask of the a-th element is

F
ho(rq) = |g] < Ezé 4)

Given the set of all element positions 7, the round-trip time-
of-flight from the ¢-th transmit element to r and back to the
r-th receive element is simply 7 ,(7,) = ta(r:) + ta(ry).

Transmit and receive beamforming are applied as follows.
Let A be the aperture element indices {1,2,...,N}. For a
transmit subaperture 7 C A and receive subaperture R C A,
the beamformed signal is

BT,R(?O,; TQ, ‘Il) = Z Z ‘I’t,r(Tt,r) exp(j2ﬂ—fd7—t,r)hthr'
teT reR
(5)

where W is the pulse-echo response matrix, the abbreviation
Te.r = Ter(Fq) has been made, and fy is the demodulation
frequency. For notational simplification, B will often be ex-
pressed without a position 7o in the image domain or the
pulse-echo matrix W because these arguments are constant
across all model iterations. Because each step is differentiable,
the entire image reconstruction process is differentiable.

B. Array Shape Calibration

Automatic differentiation frameworks such as JAX [19],
PyTorch, and Tensorflow can offer model representation and
optimization by storing differentiable operations in a compu-
tational graph. Similarly to training neural networks, we use
automatic differentiation to minimize an objective function,
where gradient backpropagation is used to update unknown
model parameters (in this case, the element positions of the
array). The objective function errors are backpropagated as
gradients through a physical model, in this case, the differ-
entiable image reconstruction process, rather than a set of
neural network layers, to directly update the estimated element
positions.

The entire iterative flexible array shape estimation process
is shown in Fig. 1. The flexible array will be referred to as

an imaging aperture. First (Fig. 1a), a full synthetic aperture
(FSA) transmission sequence is utilized to collect a pulse-echo
dataset ¥ from an unknown aperture shape. During an FSA
transmission sequence, only one element is activated during
a transmission event while all the other elements receive the
back-scattered echoes. This transmission event is repeated for
each element of the aperture, forming a multistatic dataset
(i.e., a tensor with dimensions of time by number of transmit
channels by number of receive channels). The acquired RF
data is demodulated to extract the in-phase and quadrature (IQ)
baseband components. Next (Fig. 1b), an initial assumption is
made about the aperture geometry (e.g., the aperture shape is
a linear array) given a known pitch. From this aperture shape,
element timing delays 7, ,(7,) are geometrically calculated.
Finally, the IQ data is beamformed over a set of image
domain positions 7, and a quality metric @ is calculated. The
metric is used as a term in an optimizable objective function,
and the objective error is backpropagated through the quality
calculation, the beamforming process, and the timing-delay
calculation to update the estimated element positions of the
aperture. This process can be repeated iteratively, where all
estimated element positions 7, from the current iteration 4 are
used to initialize the next iteration ¢ 4+ 1. The update rule is

=70 —y g,f (7). (©6)
a

T

where 7y is a step size parameter, and 8£(ng)) /07, denotes
the gradient of the objective function £ with respect to the
element positions 7,, evaluated at iteration 4. In other words,
element positions are updated in the direction of the negative
gradient of the objective function.

C. Quality Metrics

Seven image quality metrics from the literature are adapted
to the UltraFlex framework for evaluation. For the speckle
brightness, envelope entropy, coherence factor, and lag-one
coherence metrics below, each metric expression is evaluated
using the full transmit 7 = A and receive R = A apertures
(ie., B,k = Ba,4). For the common-midpoint correla-
tion coefficient and common-midpoint phase-error metrics,
each metric expression is evaluated using a pair of transmit
(Ta, Ts C A) and receiver (R, Rg C A) subapertures.

1) Speckle Brightness: Image speckle brightness is defined
as the magnitude of the coherent sum of images within a region
of interest. Nock et al. [21] introduced the speckle brightness
quality metric as part of a method for correcting unknown
phase aberrations. The criterion can be expressed as

QSB(Fa) = |B.A,.A(7_;a)|' (N

2) Envelope Entropy: Envelope entropy is a measure of
image disorder or defocusing. When the envelope of a beam-
formed signal has high entropy, the image has more distortion
due to malformed PSF functions. Noda et al. [18] adapted this
focusing criterion for ultrasonic flexible-array shape estimation
from applications in inverse synthetic-aperture radar [22]. The
metric can be expressed as

QEE('Fa) = _Benv('f:a) 10g2 Benv('f:a)v (8)
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where B,y represents the normalized envelope-detected signal
over the sum of all domain pixels 7g:

| Ba,a(Ta)]
~ —
Yoy [ Ba,a(ra)l

3) Coherence Factor: Mallart and Fink [23] introduced a
focusing criterion, also known as the coherence factor, as a
measure of focusing quality that is optimized with perfect
focusing and decreases under increasing aberration. The co-
herence factor is a ratio between the coherent and incoherent
beamformed signal sums across the receive aperture. The
metric can be expressed as

Benv (Fa) =

N,
Qcr(7a) = B ©)
crlTa) = =N 5
Z’l‘:l ‘B-A;T
where the abbreviation Ba, = B, (¥,) refers to the

transmit-beamformed receive-channel signals that have been
time delayed, and NN, is the number of receive channels.

4) Lag-One Coherence: Lag-based spatial coherence de-
scribes the covariance between receiver-domain signals re-
ceived at an element and its neighbor m elements (lags)
away [23]. Lag-one coherence is a specific case of lag-based
spatial coherence that only includes the first lag (m = 1) and
was introduced as a quality metric by Long et. al [24]. The
metric can be expressed as

N,—1 %
. §R{Zrzl BAvrBA,r+1}
QLC(TQ) = N 1 5 27
VI B P 1Bass]

5) Common-Midpoint Correlation Coefficient (CMCC): The
common-midpoint correlation coefficient (CMCC) is similar
to the lag-one coherence quality metric but is applied in the
common-midpoint domain. Based on Rachlin [25] and Ng et
al. [26], signals correctly beamformed from common midpoint
apertures theoretically should be the same (or otherwise highly
correlated). The CMCC metric describes the correlation be-
tween two pairs of transmit and receive subapertures that share
a common midpoint in the aperture domain. For example,
apertures 7, C 7T and R, C R may represent transmit
and receive subapertures, respectively, each composed of N
elements. Suppose that subapertures 73 C 7 and Rg C R
are another pair of transmit and receive apertures, respectively,
that are lag-one neighbors (one element separation) with 7,
and R, and share the same physical midpoint in the aperture
domain [25], [26]. The correlation between B, = B, %, (¥4)
and Bg = Bt, r,(74) is an example of the CMCC focusing

criterion and is expressed as
m{(8.55)}

By (1B

Here, the numerator represents the squared real part of the
cross-correlation, while the denominator provides normaliza-
tion by the product of the individual auto-correlations. Angle
brackets represent the correlation over a spatial kernel.

(10)

Qcc(Ta) =

(1)

6) Common-Midpoint Phase Error (CMPE): Common-
midpoint phase error was introduced as an objective function
by Simson et al. [27] and describes the phase error between
two lag-one pairs of transmit and receive subapertures that
share a common midpoint in the aperture domain. Similar to
the CMCC metric, the phase error between B, = B, ®r, (¥4)
and Bg = B7, »,(Ta) can be expressed as

A¢a,B(Fa) =/ I:B(XB;] )
and the quality metric for phase error is

Qpe(Ta) = [Ada,p5(Ta)] -

The CMPE metric is the complex angle of the CMCC. The
CMPE is computed from all lag-one pairs of transmit and
receive subapertures, where &« C A and 8 C B. Furthermore,
a filtered version of the CMPE metric can be introduced to
improve robustness against noise by selecting CMPE values
at pixels with CMCC values > pyyresh- This ensures that only
regions with sufficiently high cross-correlation contribute to
the final metric. The filtered CMPE is defined as

QPEF('Fa) - ‘A(ba,,ﬁ’(Fa) : ]l(QCC('Fa) Z pthresh)| 5

where 1(-) is the indicator function and selects a subset of
values returned by Ag,, g(7,). For the remainder of the paper,
the CMPE and CMCC quality metrics will be referred to as
phase error and correlation coefficient, respectively.

12)

13)

D. Objective Function

TABLE |
LEARNING RATES AND REDUCTIONS

Quality Metric LR Reduction Expression

21077 £y =E{5-10"2 - Qg}

21077 L1 = —B{QcF}

21077 L3 = —FE{2-1075 . Qgp}
21077 £3 = —E{10~2 - tanh"}(Qcc)}
21077 £y = —E{tanh ' (Qrc)}
21077 £ = E{In(1 + (102 - Qpgr)?)}
21077 L1 = E{In(1 + (102 - Qpg)?)}

Envelope Entropy
Coherence Factor
Speckle Brightness
Correlation Coefficient
Lag-One Coherence
Phase Error (Filtered)
Phase Error

e e e

The objective function used for optimization incorporates
one of the previously defined image quality metrics with reg-
ularization. The general expression for the objective function
is given as

L(7a) = w1 - tanh [£1(Q(74))]
+ wa - Rrv(7a)
+ w3 - Raz/de(Ta)s

(14)

where w; are weights applied to each term, and £, is the
reduction (transformation) of a quality metric. Learning rates
and reduction expressions for each quality metric were empiri-
cally tuned for optimal performance within 1,000 iterations (as
detailed in Table I). The expectation operator denotes the mean
across all pixels and, in the case of the correlation coefficient
and phase-error metrics, across all subaperture pairs. Speckle



6 IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, VOL. XX, NO. XX, XXXX 2025

brightness and envelope entropy were linearly scaled before
averaging. Lag-one coherence and common-midpoint corre-
lation coefficient metrics used a hyperbolic inverse tangent
transform to emphasize values near the boundaries of (-1,1).
Phase-error metrics were squared to penalize large errors and
then passed through the natural logarithm of one plus the input
for numerical stability. Negative signs in reduction expressions
indicate metrics maximized by correct element positioning,
unsigned expressions indicate metrics minimized by correct
element positioning. A hyperbolic tangent function is applied
to £; to confine its range to (-1, 1), preventing the need
for dynamic rescaling and enabling standardized regularization
across diverse metrics.

The purpose of the total variation regularization term Ryy is
to penalize variations between model-estimated inter-element
Euclidean distances d and multiples of the element pitch p.
This square difference is summed over the first M = 10
lags. Here, the lag index m enables the calculation of the
distance between an element and another element m neighbors
away. The number of lags was empirically chosen and can be
increased to de-emphasize aperture locality. The expression
for RTV is

RTV :ZZ nmfm'p)za

i

5)

where d,, ,, is the distance between element positions:

dn,m = ||7'n+m - Tn||2 :

The purpose of the shape differential regularization term
Ry 4. is to penalize the first derivative (i.e., the rate of
change) of the z components with respect to the x components
of the element positions in the aperture, effectively penalizing
the local curvature of the estimated array shape. This is done
by calculating the mean squared error difference in surface
normals of each element over the first M = 10 lags using the
index m. The same number of lags is used in both Rty and
Ry /4, to promote the same aperture locality. The expression
for Ry. /4. i8

M —

Rdz/dx(”_:a) = Z N m Z n+m n)27

n=1

(16)

where 6, is the finite difference in neighboring element surface
normals given by Eq. 3.

I1l. METHODS
A. Simulation

Nine unique transducer configurations were simulated to
evaluate the performance of the proposed method: two con-
vex, two concave, four sinusoidal, and one linear array. The
transducer configurations are shown in Table II. For arrays 1-
4 (convex and concave), the defined radius of curvature was
used along with sine and cosine functions to parameterize
the curved surface of the array. For arrays 5-8 (sinusoidal),
the sinusoid frequency was determined such that the array
size fits within one period. The sinusoid was laterally shifted
using spatial-phase offsets to manipulate its concavity. Array 9

TABLE Il
SIMULATED ARRAY GEOMETRIES

Array | Details

1 Convex, Radius: +50 mm
Concave, Radius: -50 mm
Convex, Radius: +10 mm
Concave, Radius: -10 mm
Sinusoid (1 cycle)
Sinusoid (1 cycle), +m phase shift
Sinusoid (1 cycle), +7/2 phase shift
Sinusoid (1 cycle), —7/2 phase shift
Linear

O 00| | O\ W[ | W D

was initialized as a line in the lateral dimension. For each
array geometry, the arc length of the parametric curve was
defined as £ = (N — 1) - p, where N is the number of
elements and p is the pitch of the array. This variable arc
length accommodates both simulation and experimental array
geometries (e.g., the linear L12-3v and curvilinear C5-2) with
varying numbers of elements and pitch such that a sinusoid,
for example, completes a full cycle within the bounds of
the specific array. The array configurations utilized a center
frequency of 7.5 MHz, 128 elements, and a pitch of 200.0 pm.
Ten in-silico phantoms were produced and are shown
in Fig. 2: one point-grid target (point spacing 2.0 mm),
one speckle phantom, one multi-target phantom with various
echoic inclusions and point targets, one Stanford logo-based
phantom, and six ImageNet-based speckle phantoms [28].

Point grid Multi-target  Stanford

Speckle

B-mode Amplitude (dB)

[ —
-50-40-30-20-10 0

Axial (mm)

10010 -10010 -10010 -100 10 -100 10

Lateral (mm)

-100 10

Fig. 2. Resulting B-mode images for custom (first row) point grid,
speckle, multi-target, Stanford logo-based, and (second row) ImageNet-
based Field Il target simulations. The red rectangular region represents
the areas used to compute the quality metrics and B-mode reconstruc-
tions to prevent sampling outside Field Il simulation boundaries.

Field II simulations of RF channel signals were produced
using the calc_scat_multi function with a full synthetic
aperture (FSA) transmit sequence to parallelize the simulations
across a CPU cluster. A sampling frequency of 160 MHz and
a center frequency of 7.5 MHz were used. The ImageNet-
based in silico phantoms were created using a methodology
similar to Hyun et al. [29] and Brickson et al. [30]. These
natural images provide a diverse set of patterns, contrasts,
and heterogeneity ideal for model validation before moving
to experimental phantom and in vivo data. Each in silico
phantom was defined to have a sound speed of 1540 m/s
and no attenuation. First, the natural images were loaded into
MATLAB, converted to grayscale, normalized in the range
(0,1], and interpolated onto a grid. A scatter density of 10
scatterers per resolution cell was used, where a resolution cell



AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 7

was assumed to have a volume A3 [31]. This scatter density
is approximately equivalent to 1,155 scatterers/mm?®. Field II
simulations were produced for all 10 phantom layouts using
each of the nine array geometries. In total, 90 simulations were
generated.

After simulation, the RF data was demodulated into base-
band in-phase and quadrature (IQ) components, low-pass
filtered, and decimated by a factor of eight. The resulting
downsampled multistatic 1Q dataset ¥ € CNsTX*Rx_ array
element positions 7,, downsampled sampling frequency f,,
demodulation frequency fy; (which was equal to the center
frequency), and initial time ¢, values were loaded into the
UltraFlex framework.

B. Additive Noise

The impact of white noise on shape estimation model
performance was investigated using an additive noise model
applied to simulation data. Here, white noise represents vary-
ing levels of thermal noise present in ultrasound imaging
systems. Let ¥,,(¢) be the normalized signal representing the
full synthetic receive dataset. Let n2(¢) be the additive Gaussian
white noise expressed as

n(t) = nr(t) +j-ne(t),

where n;(t) and ng(¢) are the in-phase and quadrature compo-
nents, respectively, and are independent Gaussian random vari-
ables with zero means and variances o2 (i.e., ns(t),ng(t) ~
N(0,02)). The noise, n(t), is scaled by a = W,y - 10(7/20),
where W, is the root-mean-square of the pulse-echo signal
(which is 1 after the normalization process described in
Sec. III-D), and 7 is the noise level in decibels (dB). The
final expression for the signal with the additive noise is

a7

1
W, (1) =®,(t) + ﬁn(t) Q.
While the shape estimation model configuration remained
the same for each noise level, full synthetic receive data ¥, (¢)
with varying levels of noise (n = [—0, 0, 6.0,12.0, 18.0] dB)
were added to the simulation data, resulting in signal-to-noise
ratios (SNR) of SNRy, = [00,0, —6.0, —12.0, —18.0] dB.

(18)

C. Experimental Data Acquisition

Experimental data was obtained from three sources using
a Vantage 256 research ultrasound system (Verasonics Inc.,
Kirkland, WA, USA). First, RF channel data from an ATS
549 phantom (Sun Nuclear, Norfolk, VA) with a previously-
calibrated ground truth sound speed of 1460 m/s [32] was
acquired for this work using linear L12-3v and curvilinear C5-
2v rigid transducer arrays. Second, RF channel data from three
in vivo rat livers using an L12-3v transducer was obtained
from a previously acquired dataset [33]. Third, in vivo human
liver data was acquired using a C5-2v array under Protocol
IRB-56630 and informed consent was obtained. The simplified
assumption of a homogeneous sound speed distribution of
1540 m/s was made for both in vivo datasets. In total,
six samples were selected from the L12-3v datasets (three
phantom and three in vivo rat liver), and six samples were

selected from the C5-2v datasets (three phantom and three
in vivo human liver). While the ground truth array shape is
known for both transducers, the model can be initialized with
any array geometry to emulate a flexible array and study the
impact of unknown model initialization on the subsequent
shape estimation capability and convergence of the model.
Table III summarizes the different acquisition configurations
for each setup. In all cases, a full synthetic aperture (FSA)
transmission sequence was used. The RF channel data was
converted to baseband IQ data and low-pass filtered using the
bandwidth f,.

TABLE IlI
SUMMARY OF EXPERIMENTAL DATA ACQUISITION
Trans. Source ¢ (m/s) | fo MHz) | fy (MHz) | Elem.*
L12-3v | ATS pha. 14607 6.00 6.25 128
L12-3v | Rat liver 1537% 7.81 7.81 128
C5-2v ATS pha. 14607 4.00 3.91 64
C5-2v Human liver N/A 4.00 3.91 64

*The L12-3v and C5-2v arrays have 192 and 128 elements, respectively;
only the center N elements were selected. TThe ATS phantom sound speed
was previously calibrated [32]. The rat liver sound speed was estimated by

averaging ground truth values from corresponding specimens in [33].

For both the L12-3v phantom and rat liver datasets, only
data from the center 128 array elements were used to reduce
the runtime and memory usage of the shape estimation model.
For both the C5-2v phantom and human liver datasets, only
data from the center 64 array elements were used to avoid
model errors due to poor coupling of the outer elements.

D. Model Implementation

The UltraFlex framework described in Sec. II, including
the differentiable image reconstruction, quality metrics, and
objective function, was implemented using JAX [19]. When
the IQ data ¥(¢) is loaded into the model, it is first normalized
by the maximum IQ magnitude so that all entries have a
magnitude in the range [-1,1]. Then, the data is normalized by
the root mean square (RMS) magnitude. This normalization
process promotes numerical floating-point stability. After this
normalization process, the additive noise is introduced. For
model optimization, the Adam optimizer [34] was used within
the JAX-based Optax library.

1) Array Initialization: Element positions from all simulation
and experimental datasets were initialized with one or more
of the geometries described in Table II. The same array
initialization code structure was used for Field II simulations in
MATLAB and the UltraFlex framework in Python to minimize
numerical differences between programming languages.

2) Reconstruction Grid Implementation: The quality metrics
described previously are evaluated on patches within the
imaging domain. Each patch is centered at a specific 2D
position 7, and includes a local 3 x 3 (lateral by axial)
kernel of relative offsets 8, spanning the range [—\ /2, +7/2].
The set of absolute positions corresponding to one patch is
given by 'Fpatch = Tp + 5k, where 'Fpatch - Fpatches e .
The full collection of patch-sampled positions across the
domain is denoted by Tpacches, and is distinct from the higher-
resolution imaging grid 7img € 2 used for beamformed B-
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Algorithm 1 Reconstruction Grid Definitions

Define image and patch limits (mm):
if array is “C5-2v” then
Limg_range € [71007 100}’ Zimg.range € [07 140}
Tpatch_range € [_1001 100], Zpatchrange € [207 72]
else
Limg_range € [715’ 15]» Zimg range € [0740}
Tpatch_range € [_157 15]7 Zpatch_range € [27 42]
: end if
: Compute image reconstruction grid:
10: @iy <— Linspace in @jmg range With spacing A/3
11: Zimg < Linspace in Zimg_range With spacing A/3
12: ¥y < Cartesian product of @jng and zjng
13: Compute patch center grid:
14: @, < Linspace in @pich_range With 18 points
15: zp < Linspace in Zpach_range With 21 points
16: #, < Cartesian product of x; and zp
17: Define local kernel offsets:
18: 8}, <+ Cartesian product of lateral and axial linspaces in [—\/2, \/2]
19: Compute full patch sampling grid:
20: Ppaches <— Tp + O (vector sum of patch centers and kernel)

ORI N R WD

mode reconstruction. Pseudo-code for initializing the imaging
and patch-level grids is provided in Alg. 1. An 18 x 21
(lateral by axial) grid of patch centers 7, was used, with
spacings of 1.67 mm x 1.90 mm for regular field-of-view
apertures (simulations and L.12-3v) and 11.11 mm x 2.48 mm
for larger apertures (C5-2v). For metrics employing synthetic
subapertures in common-midpoint analysis, a subaperture size
of 17 elements was used. For B-mode reconstruction, a grid
spacing of \/3 was applied.

3) Regularization: The impact of the two regularization
terms was examined by a 2D parametric sweep of term weight-
ings, where wy = [1074,10°] and w3 = [1072,10'] in steps
of powers of ten. The evaluation was performed across the
speckle simulations produced using the nine array geometries
to determine the ideal weightings for each regularization term
of Eq. 14. The model was initialized with the linear array
(Array 9) for each speckle simulation dataset.

E. Model Evaluation

1) Model Evaluation Criterion: The mean Euclidean error
(MEE) £ between the estimated element positions and ground
truth element positions was used as the main evaluation
criterion across all experiments and is defined as

ZHT“
z%
(1)

where N, is the total number of elements in the aperture, 7,
represents a model-estimated element position at iteration ¢,
and 71 represents the corresponding ground truth element
position. MEE is used to evaluate model performance for
different quality metrics and SNRs. We note that Eq. 19 is
identical to the mislabeled ”mean absolute error (MAE)” used
in previous work and is thus directly comparable to the errors
described in previous literature.

g — Y H

19)

GT)) (Z(gz') B Z((ZGT))Q

2) Model Convergence Validation: The convergence of the
iterative model over P = 1000 iterations is examined using
the following stability error criterion: During the last K =
100 iterations, the mean displacement of the element positions
must be less than or equal to 100 um. The mean magnitude of
the displacement of element positions over the last K iterations
and all N, elements is

P—1

N

_ 1 o . )

A= —— E E HTSH) — 7
PNa i=P—K a=1

given iteration ¢ and element index a. Notably, this conver-
gence validation is independent of the true element positions.

3) Computational Resource Usage: Model development
was explored on an NVIDIA RTX 3090 with 24 GB of VRAM
(NVIDIA, Santa Clara, CA) and then deployed on a SLURM
cluster comprised of NVIDIA RTX A6000 GPUs with 48 GB
of VRAM. Finally, to demonstrate the computational accessi-
bility of this work, model runtime results for an NVIDIA RTX
3060 with 12 GB of VRAM are shown. In all cases, JAX was
used with jax1ib built for CUDA 12.2.

.

V. RESULTS
A. Simulation
Array 1 Array 2 Array 3
S ——
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Fig. 3. Comparison of regularization method weightings for each of the
nine array geometries. The shape estimation model was initialized with
the linear array (Array 9) for a speckle target (top row, second column,
Fig. 2) while using the filtered common-midpoint phase-error model. No
additive noise was applied (i.e., SNRy,, = oo).

1) Regularization: The parametric sweep results of regu-
larization weights are visualized in Fig. 3. For the particu-
lar model configuration described in the caption of Fig. 3,
shape-differential regularization (Rg.,4,) had no impact on
MEE results for ws < 107!. At this weighting and above
(w3 > 1071), shape differential regularization adversely
affected MEE results. Additionally, TV regularization (Rrv)
did not affect the MEE results for wy < 10°, followed
by an improvement in estimation on weighting range we =
[103,106). For wy > 105, MEE results for Arrays 5-8 (i.e.,
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sinusoidal geometries) were adversely affected, MEE results
for Arrays 1-4 (convex and concave geometries were either
adversely effected or exhibited little change, and MEE results
for Array 9 (linear array) did not change. Based on these
results, the remaining experiments presented in this paper
utilize a model configuration with TV regularization only and
a term weighting of wy = 10

Quality Metric Comparison for Model Convergence

Avg. Mean Euclidean Error (um)

00 200 400 600 800 1000
Iteration
Final MEE (um)
Quality Metric (Avg. + Std.)
—— Envelope Entropy (402 £ 197)
---- Coherence Factor (318 £ 175)
—-—- Speckle Brightness (236 + 129)
-------- CM Correlation Coefficient (054 + 066)
Lag-One Coherence (046 £ 025)
———- CM Phase Error (Filtered) (038 + 054)
-----= CM Phase Error (010 = 004)

Fig. 4. Average MEE vs. model iteration results for various metric-
based objective functions. For each quality metric, the MEE results are
averaged across the nine array configurations and the four simulation
targets (i.e., the top row of Fig. 2). The model was initialized with the
linear array geometry, and a regularization weighting of wz = 10% was
used in all cases. No additive noise was applied.

2) Metric Comparison: In Fig. 4, average MEE across the
simulated data for various metric-based objectives are plotted
against model iteration. The envelope entropy metric results in
the worst shape estimation model performance, characterized
by the greatest final average MEE. Coherence factor and
speckle brightness exhibit similar model performance with
final average MEEs of 318 um and 236 um, respectively.
The correlation coefficient, lag-one coherence, and phase-
error metric-based models result in the best shape estimation
performance, with final average MEEs less than or equal to
54 pm.

An example of B-mode reconstructions at various iterations
using the filtered phase-error metric-based model is shown in
Fig. 5. Between iterations 70 and 130, image structures come
into focus and shape estimation becomes more accurate. Be-
tween iterations 230 and 1000, smaller improvements in shape
estimation occur. Improvements in image focusing and quality
are harder to identify visually. Very small improvements may
be observed between iteration 230 and higher, although almost
no visually detectable changes are observed after iteration 250
despite the reduction in MEE. Additionally, MEE decreases
from 62.8 um to 19.3 pm.

Iteration 0 Iteration 50 Iteration 70 Iteration 90 Iteration 130 2493.1
MEE S
£
1869.8 =
e
1246.6 2
©
S
623.3 5
=]
w
0 ’ .0
Iteration 230 Iteration 250 Iteration 280 Iteration 1000 Ground Truth
MEE
-10 ~
o
z
-20 o
el
2
-30 3
£
40 <

40 0 -50

10 -10 0 10
Lateral (mm)

Fig. 5. Comparison of focusing at various iterations. A pink curve rep-
resents the ground-truth array shape, and the overlaid curve represents
the model-estimated array shape with a variable color map from green
to red representing lower and higher element-wise Euclidean errors,
respectively. The array-wise MEE, in um, is displayed above each array.

Fig. 6 exhibits B-mode focusing across different quality
metrics for selected simulations. Compared with the quantita-
tive results averaged across all nine array geometries shown in
Fig. 4, the results shown in Fig. 6 correspond to Array 5 only.
The envelope entropy metric-based model fails to estimate
the array shape for all of the phantoms. The correlation
coefficient and phase-error metric-based models achieved the
best focusing of the point grid phantom target, evident in the
sharpness of the point-spread function on and near the point
targets.

TABLE IV
MODEL VALIDATION RESULTS

Failed Sim. Cases Failed Exp. Cases
. . (Fig. 7) (Fig. 9)

Quality Metric No Reg. | Reg. | ATS Liver
Envelope Entropy 146 0 6 25
Coherence Factor 7 0 0 0
Speckle Brightness 9 0 0 0
CMCC 2 0 1 0
Lag-One Coherence 58 3 0 0
CMPE (Filtered) 6 0 0 0
CMPE 2 1 0 0
Valid Cases 1660 1886 371 353
Total Cases 1890 1890 378 378

3) Additive Noise: Fig. 7 exhibits the impact of additive
white noise on the final-iteration MEE. Before plotting, the
model results were validated by the procedure described in
Sec. III-E.2, and only the model results that pass the validation
criterion are included in Fig. 7. Table IV summarizes the
simulation validation process results in the first two columns.

Starting with the case of no model regularization, Fig. 7a
shows boxplots of the MEE for the final iteration, arranged
in descending order of median value from left to right. The
inter-quartile range (IQR) for envelope entropy is small in this
case because many model results did not meet the validation
criterion. Notably, the boxplot includes model results above the
initial average MEE. This means that in some cases, the shape
estimation model produced MEEs that were further from the
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Fig. 6. B-mode images based on model convergence using different image quality metrics. Each column represents a different image quality metric
used in the objective function of the iterative model. The columns are organized from left to right based on the ascending order of the final average
MEEs presented in Fig. 4. From top to bottom, a point grid, speckle, multi-target, and Stanford logo-based phantom are visualized in each row. A
pink curve represents the ground-truth array shape, and the overlaid curve represents the model-estimated array shape with a variable color map
from green to red representing lower and higher element-wise Euclidean errors, respectively. The array MEE, in um, is displayed above each array.

ground truth than if no shape estimation model had been used.
In Fig. 7b, a partial boxplot is shown for the median and IQR
of each metric group. The same metric order is maintained
for all SNR groupings established in Fig. 7a. As the additive
noise level increases, all median MEEs monotonically increase
with the exception of envelope entropy and lag-one coherence.
The lag-one coherence metric-based model produces no valid
results at SNRq,n = —18.0 dB.

Fig. 7c shows the same information as Fig. 7a but with
model regularization (wy = 10%). With regularization, the lag-
one coherence, correlation coefficient, and phase-error metrics
have a much smaller IQR compared to the other metrics. The
coherence factor results have the largest IQR despite having
one of the lowest median values.

B. Experimental

The proposed shape estimation models were validated using
experimental phantom and in vivo datasets. For Fig. 8a-
b, the first three columns show various shape initialization
approaches for data from the calibrated ATS 549 phantom.
The second three columns show various shape initialization
approaches for in vivo liver data from a rat (L12-3v only) and
a human (C5-2v only). In each case, the filtered phase-error
metric-based model was used. The model converges to the
“correct” image in all cases despite sound-speed assumption
errors and different initialization configurations. However, for
the ground-truth-initialized linear and curvilinear examples,
the post-convergence shapes contain non-zero MEEs.

In all results shown in Fig. 8, the qualitative focusing of
the resulting B-modes improves. For the L12-3v phantom data
results, speckle becomes brighter and all cyst targets become
visible. Furthermore, for the L12-3v in vivo rat liver data,
the muscle fascia between the depths of 1.0 and 5.0 mm
straightens and becomes brighter, the specular tissue at = =
-5.0 mm, z = 16.0 mm becomes brighter, and features below
20.0 mm increase in visual clarity.

Fig. 9 shows a quantitative comparison of experimental
results from different metric-driven models. Again, before
plotting, the model results were validated by the procedure
described in Sec. III-E.2, and only the model results that
pass the validation criterion are shown in Fig. 9. Table IV
summarizes the experimental validation process results in the
last two columns.

In the idealized homogeneous phantom results, most of the
metric-driven models (except speckle brightness and envelope
entropy) have similar final MEEs, which are larger than the
noise-free simulation results. In vivo results yielded good
performance with increased error compared to the simulation
and phantom results. The speckle brightness metric-based
model had the worst performance, representing a departure
from the metric comparison results from the simulation and
additive noise studies presented earlier.

C. Computational Resource Usage

Table IV-C provides a runtime comparison (1000 iterations)
between the different quality metric-based models and various
NVIDIA RTX GPUs. Each entry in the table includes the
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Fig. 7.

Quantitative comparison of final-iteration shape estimation model performance across different image quality metrics and SNRg,,

—— CM Correlation Coefficient CM Phase Error (Filtered)

—— CM Phase Error

[00,0,—6.0, —12.0, —18.0] dB. Each boxplot (a,c) and partial boxplot (b,d) contains all validated results averaged across the nine array
geometries and the six ImageNet-based speckle phantoms. The initial average MEE when using the linear array (Array 9) for model initialization is
shown as a dotted red line. (a) A boxplot of model results for each quality metric is shown without model regularization, representing the first group
in the (b) partial boxplot (median and IRQ) comparison of different SNRy,, values. (c) A boxplot of model results for each quality metric is shown
with model regularization (w2 = 10%), representing the first group in the (d) partial boxplot comparison of various SNRy,, values.

TABLE V
ULTRAFLEX MODEL RUNTIME
Quality Metric 3090 (s) | A6000 (s) 3060 (s)
Envelope Entropy 147 +£5 | 232 £19 | 316 £ 11
Coherence Factor 152 £5 | 223 £23 | 331 £ 23
Speckle Brightness 146 =4 | 231 £ 19 | 316 £ 12
Correlation Coefficient | 155 &6 | 231 £ 20 | 344 £+ 34
Lag-One Coherence 156 £ 5 | 227 £ 21 | 342 + 29
Phase Error (Filtered) 156 £ 7 | 231 £20 | 346 + 34
Phase Error 156 £ 6 | 231 £ 19 | 345 + 34

average runtime of one simulation, one L12-3v, and one C5-2v
result.

V. DISCUSSION

The UltraFlex framework was evaluated using multiple
quality metrics in simulation, phantom, and in vivo data. Re-
cent flexible-array shape calibration methods in the literature
achieve an average MEE in position as low as 40 um [18] for
noise-free simulation data and as high as 1,100 um [16] for in
vivo data. With the proposed method, a median MEE as low as
3.7 uym was achieved for noise-free simulations. For intuitive

understanding of these errors, visual inspection of the images
in Fig. 5 and 6 shows that a 40 um MEE and below does not
appear to produce visibly detectable changes in image quality.
For example, in Fig. 6, the point targets and the borders of the
”S” in the Stanford logo appear nearly identical to the ground
truth for the speckle brightness images, which have MEEs of
41.2 ym and 40.1 pm for the point target and Stanford logo
images, respectively. Visibly apparent degradations begin to
appear at 55.5 ym MEE in Fig. 6 (e.g., the vertical borders
of the Stanford logo in the lag-one coherence image) and at
62.8 um MEE in Fig. 5.

Note that the image quality from these errors is under
the assumption of a correct and constant speed of sound. In
Fig. 8, high-quality images are still produced despite the larger
MEEs. In Fig. 8a, the final shape estimations have a small
symmetric convex curvature bias. However, in the case of the
L12-3v in vivo rat liver data, the final shape estimations have
a small asymmetric convex curvature bias. These errors are
likely the result of an incorrect sound speed used to compute
the time delays in the model. For the in vivo cases, the
sound speed error is heterogeneous and has a mean positive
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Fig. 8. B-mode images using the UltraFlex framework and filtered phase-error metric for (a) L12-3v and (b) C5-2v transducer data. Three array
shape configurations are used to initialize the shape estimation model for both phantom and in vivo data: Array 1 (curvilinear; first column), Array 5
(sinusoidal; second column), and Array 9 (linear; third column). In both panels (a) and (b), the top row depicts the model initialization and resulting
B-mode, whereas the bottom row depicts the final-iteration shape estimation and resulting B-mode. A pink curve represents the ground-truth array
shape, and the overlaid curve represents the model-estimated array shape with a variable color map from green to red representing lower and
higher element-wise Euclidean errors, respectively. The array MEE, in um, is displayed above each array.

bias throughout the domain, resulting in a nonuniform convex
curvature bias. Because both sound speed errors and element
position errors result in phase error during reconstruction, the
shape estimation model incorporates the sound speed error into
the shape. This error is similar to a near-field phase-screen
model commonly used for aberration correction. A similar
deviation from the ground truth can be observed in the C5-2v
phantom images of Fig. 8b. In addition to sound speed error,
experimental data has noise, so the error is a combination of

both sound speed error and SNR. For in vivo cases, there is
also potentially diffuse reverberation noise that will contribute
to increased error. Even though the in vivo shape estimations
show relatively large errors compared to simulation results, the
image quality remains high because the model is compensating
for both the shape and the effective phase screen error. Thus,
the MEE shown in Fig. 8 cannot be directly compared to the
MEE of the simulations (Fig. 6) because some of the MEE in
Fig. 8 is due to corrections for sound speed errors appearing
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Fig. 9. Quantitative comparison of model convergence across different
image quality metrics. Results are grouped by (a) ATS phantom and (b)
in vivo liver data. For each grouping, three L12-3v datasets and three
C5-2v datasets are utilized. The model is initialized with all nine array
geometries using the indicated sound speed of each grouping. Thus,
each boxplot consists of 54 results (depending on the criterion validation
process).

as position errors. However, in many applications of flexible
arrays, the higher-quality image may be preferable to knowing
the exact position of the array elements.

The performance of the speckle brightness-based model
on experimental data is significantly worse compared to its
performance in the simulation and additive noise studies.
This is likely due to the metric reductions in Table I being
empirically tuned for simulation datasets. Thus, the tuning for
speckle brightness may not be best suited for phantom and in
vivo datasets because speckle brightness is inherently sensitive
to amplitude distribution variations. This is a fundamental
limitation of speckle brightness and entropy: optimization
objective metrics with fewer local minimums or maximums
will lead to better final performance than speckle brightness
and envelope entropy because of their lack of sensitivity to
the sampling of the amplitude distribution.

The overall performance of envelope entropy presented
across all experiments in this work was substantially worse
than previous reports in the literature [7], [18]. This is
likely due to differences in the implementation of envelope

entropy and region-of-interest (ROI) windowing. In Noda
et al. [18], model evaluation was performed on very small
aperture sizes of only 20 elements, ranging between 4 and
16 mm in length, which is a favorable condition for good
convergence because the initialization errors are small. In this
work, the larger aperture sizes inherently introduced larger
initialization errors, leading to envelope entropy having the
worst convergence performance in terms of the number of
invalid results. Furthermore, this work used a fixed grid to
compute the quality metric at image domain positions #paiches-
The spacing between the coordinates on this grid was greater
than or equal to 2 mm. Therefore, localized entropy variations
were not considered. For envelope entropy results presented
in Fig. 7c and Fig. 7d, some of the final average MEEs were
greater than the initial average MEE. These images appear to
have better qualitative or visual focusing than expected, but
this is usually exhibited as rotated image features that appear
in focus (e.g., the coherence factor result for the Stanford logo
shown in Fig. 6). This optimization state is due to the optimizer
converging to a local minimum.

Different simulation targets presented unique qualitative
focusing results across the various quality metrics. The point
target grid sometimes had the best and the worst reconstruction
compared to the other phantom targets in Fig. 6. The periodic
structure of the point target grid and points in the Stanford
logo presented a greater number of local minima in the
objective function, thereby hampering performance. This is
also potentially why we see a difference between the average
MEE results shown in Fig. 4 and the median MEE results
shown in Fig. 7a and Fig. 7c.

The correlation coefficient and phase-error metrics (regular
and filtered) were the only results that had their average
MEE vs. iteration curves intersect all other average MEE vs.
iteration curves (roughly iteration 50 in Fig. 4). This suggests
that in a stepwise comparison, the correlation coefficient and
phase-error-based objectives could more efficiently optimize
the array shape on the iteration range [50, 150] than the
other objectives, despite having the same or lower learning
rate. While lag-one coherence was the most efficient on the
iteration range [0, 50], this is likely due to the higher learning
rate used in the lag-one coherence-based model, suggesting
an opportunity to further adjust learning rates to improve
convergence.

Rigid-array transducers were chosen to provide a known
ground truth for performance evaluation, and while the array
is not flexible, a flexible array is emulated by initializing the
model with an erroneous shape (e.g. curvilinear array data is
examined with a sinusoidal array shape initialization). Data
from the C5-2v array was limited to the central 64 elements
due to element coupling between a curvilinear rigid array and
a linear phantom surface; it was not due to model failure with
larger arrays.

Regarding the computational resource usage of the Ultra-
Flex framework, each model currently takes less than 2.6 min-
utes to achieve convergence, and a significant amount of this
time is for B-mode reconstruction. Three potential approaches
can significantly improve runtime. The first approach is to
apply one or more of the following: reduce the number of
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iterations, further tune the learning rate, or modify the reduc-
tion expressions presented in Table I. The second approach
is to investigate alternative auto-differentiation frameworks,
directly implement UltraFlex in a compiled language, or
acquire different GPU hardware that is faster or has more
VRAM, or any combination of these. The third approach is to
simply use the models for initial shape calibration as opposed
to a real-time implementation; for some applications, the body
surfaces do not change significantly over time.

Although we exclusively use FSA sequences to establish
the proof of concept, the UltraFlex framework is compatible
with any imaging sequence where the receive channel data
is collected for every transmit event. In the latter case, if
sufficient transmit events are used, REFoCUS [35], [36] can
be used to reconstruct the multistatic (FSA) data needed to
apply the differentiable framework [27].

VI. CONCLUSION

UltraFlex, an iterative model-based ultrasonic flexible-array
shape calibration framework based on automatic differentia-
tion, was presented. Model performance was quantitatively
evaluated while examining multiple image quality metrics:
envelope entropy, speckle brightness, lag-one coherence, co-
herence factor, common-midpoint correlation coefficient, and
common-midpoint phase error. These image quality metrics
were evaluated on simulated phantoms using a variety of array
shapes. Experimental phantom and in vivo liver datasets were
also investigated using transducers with known geometries.
Speckle brightness, envelope entropy, and coherence factor
enabled model convergence under many conditions. Lag-
one coherence, common-midpoint correlation coefficient, and
common-midpoint phase error enabled more accurate element
position estimations and improved visual ultrasound image fo-
cusing quality. Results indicate that common-midpoint correla-
tion coefficient and phase-error quality metrics were the most
robust against additive white noise while achieving median
MEEs of 3.7 um for simulation, 29.7 um for phantom, and
69.0 um for in vivo liver data. These array shape calibration
results show promise for the current and future development
of experimental flexible- and wearable-ultrasonic arrays.
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